5,288 research outputs found

    Integrating Random Shocks Into Multi-State Physics Models of Degradation Processes for Component Reliability Assessment

    No full text
    International audienceWe extend a multi-state physics model (MSPM) framework for component reliability assessment by including semi-Markov and random shock processes. Two mutually ex-clusive types of random shocks are considered: extreme, and cumulative. Extreme shocks lead the component to immediate failure, whereas cumulative shocks simply affect the component degradation rates. General dependences between the degradation and the two types of random shocks are considered. A Monte Carlo simulation algorithm is implemented to compute component state probabilities. An illustrative example is presented, and a sensitivity analysis is conducted on the model parameters. The results show that our extended model is able to characterize the influences of different types of random shocks onto the component state probabilities and the reliability estimates

    Fuzzy Reliability Assessment of Systems with Multiple Dependent Competing Degradation Processes

    Get PDF
    International audienceComponents are often subject to multiple competing degradation processes. For multi-component systems, the degradation dependency within one component or/and among components need to be considered. Physics-based models (PBMs) and multi-state models (MSMs) are often used for component degradation processes, particularly when statistical data are limited. In this paper, we treat dependencies between degradation processes within a piecewise-deterministic Markov process (PDMP) modeling framework. Epistemic (subjective) uncertainty can arise due to the incomplete or imprecise knowledge about the degradation processes and the governing parameters: to take into account this, we describe the parameters of the PDMP model as fuzzy numbers. Then, we extend the finite-volume (FV) method to quantify the (fuzzy) reliability of the system. The proposed method is tested on one subsystem of the residual heat removal system (RHRS) of a nuclear power plant, and a comparison is offered with a Monte Carlo (MC) simulation solution: the results show that our method can be most efficient

    Modeling of dimmable fluorescent lamp including the tube temperature effects

    Get PDF
    This paper presents an improved semitheoretical fluorescent lamp model by including the effect of the lamp tube temperature on the lamp electrical parameters at different dimming levels. The experimental results have verified that the lamp tube temperature is a linear function of the lamp's input power and has significant influence on the lamp's electrical parameters during the dimming process. The comparison on the simulation and measurements shows that the improved lamp model can predict the lamp electrical characteristics accurately in a wide dimming range under both low- and high-frequency operations. © 2010 IEEE.published_or_final_versio

    Observation of Landau level-like quantizations at 77 K along a strained-induced graphene ridge

    Full text link
    Recent studies show that the electronic structures of graphene can be modified by strain and it was predicted that strain in graphene can induce peaks in the local density of states (LDOS) mimicking Landau levels (LLs) generated in the presence of a large magnetic field. Here we report scanning tunnelling spectroscopy (STS) observation of nine strain-induced peaks in LDOS at 77 K along a graphene ridge created when the graphene layer was cleaved from a sample of highly oriented pyrolytic graphite (HOPG). The energies of these peaks follow the progression of LLs of massless 'Dirac fermions' (DFs) in a magnetic field of 230 T. The results presented here suggest a possible route to realize zero-field quantum Hall-like effects at 77 K

    Petri-Net Simulation Model of a Nuclear Component Degradation Process

    No full text
    International audienceMulti physical state modeling (MPSM) is a novel approach being investigated for estimating the reliability of components and systems in the context of probabilistic risk assessment (PRA). The approach integrates multi-state modeling, which describes the degradation process by transitions among discrete states (e.g. initial, micro-crack, rupture, etc) and physical modeling by (physical) equations that govern the degradation process. In practice, the degradation process is non-Markovian and its transition rates are time-dependent and influenced by external factors such as temperature and stress. Under these conditions, it is in general difficult to derive the state probabilities analytically. On the contrary, Petri nets provide a flexible modeling framework for describing degradation processes with arbitrary transition rates. In this paper, we build a Petri net in support of Monte Carlo simulation of the stochastic aging behavior of a nuclear component undergoing stress corrosion cracking. The results are compared with analytical results derived in a previous work of literature

    Dynamic Reliability Models for Multiple Dependent Competing Degradation Processes

    No full text
    International audienceThis paper presents a holistic treatment to multiple dependent competing degradation processes, by employing the piecewise-deterministic Markov process (PDMP) modeling framework. The proposed method can handle the dependencies between physics-based models, between multi-state models and between these two types of models. A Monte Carlo simulation algorithm is developed to compute the components/systems reliability. A case study on one subsystem of the residual heat removal system (RHRS) of a nuclear power plant is illustrated
    • …
    corecore